Differential discrimination of G-protein coupling of serotonin$_{1A}$ receptors from bovine hippocampus by an agonist and an antagonist

K.G. Harikumar, Amitabha Chattopadhyay*

Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India

Received 20 July 1999

Abstract We have studied the effect of guanosine-5'-O-(3-thiotriphosphate) (GTP-γ-S), a non-hydrolyzable analogue of GTP, on agonist and antagonist binding to bovine hippocampal 5-hydroxytryptamine (5-HT)$_{1A}$ receptor in native membranes. Our results show that the specific binding of the agonist is inhibited with increasing concentrations of GTP-γ-S along with a reduction in binding affinity. In sharp contrast to this, antagonist binding to 5-HT$_{1A}$ receptor shows no significant reduction and remains invariant over a large range of GTP-γ-S concentrations. The binding affinity of the antagonist also remains unaltered. This shows that the agonist and the antagonist differentially discriminate G-protein coupling of 5-HT$_{1A}$ receptors from bovine hippocampus.

© 1999 Federation of European Biochemical Societies.

Key words: 5-Hydroxytryptamine$_{1A}$ receptor; 8-Hydroxy-2-(di-N-propylamino)tetralin; 4-(2'-Methoxy)-phenyl-1-(2'-(N-2'-pyridinyl)-p-fluorobenzamido)ethyl-piperazine; G-protein coupling; Guanosine-5'-O-(3-thiotriphosphate); Bovine hippocampus

1. Introduction

Serotonin (5-hydroxytryptamine (5-HT)) is an intrinsically fluorescent [1], biogenic amine which acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous systems [2]. Serotonergic signalling appears to play a key role in the generation and modulation of various cognitive and behavioral functions including sleep, mood, pain, addiction, locomotion, sexual activity, depression, anxiety, alcohol abuse, aggression and learning [3–5]. Disruptions in serotonergic systems have been implicated in the etiology of obsessive compulsive disorder [4,6,7]. Serotonin receptors are members of a superfamily of various types of serotonin receptors, the G-protein-coupled GTP binding regulatory proteins (G-proteins). Among the various groups [8]. Serotonin receptors are members of a superfamily of seven transmembrane domain receptors [9] that couple to GTP binding regulatory proteins (G-proteins). Among the various types of serotonin receptors, the G-protein-coupled 5-HT$_{1A}$ receptor subtype has been the most extensively studied for a number of reasons [10]. We have recently partially purified and solubilized the 5-HT$_{1A}$ receptor from bovine hippocampus in a functionally active form [11] and have shown modulation of receptor binding by metal ions [10] and alcohols [12].

Since most seven transmembrane domain receptors are coupled to G-proteins [13], guanine nucleotides are known to regulate agonist binding. The 5-HT$_{1A}$ receptor is negatively coupled to the adenylate cyclase system through G-proteins [14]. We report here that agonist binding to the 5-HT$_{1A}$ receptor is sensitive to guanine nucleotides. However, antagonist binding to the 5-HT$_{1A}$ receptor is found to be insensitive to guanine nucleotides. This could be due to the binding of the agonist only to those receptors which are coupled to G-proteins, while the antagonist binds to all receptors irrespective of their state of G-protein coupling.

2. Materials and methods

Fresh bovine brains were obtained from a local slaughterhouse within 10 min of death and the hippocampal region was carefully dissected out. The hippocampi were immediately flash frozen in liquid nitrogen and stored at −70°C until further use. Native membranes were prepared as described earlier [12]. Bovine hippocampal tissue (~120 g) was homogenized as 10% (w/v) in a polytron homogenizer in buffer A (2.5 mM tris-(hydroxymethyl)aminomethane (Tris), 0.32 M sucrose, 5 mM ethylenediaminetetraacetic acid (EDTA), 5 mM ethylene glycol bis-(β-aminoethyl)-ether)-N,N,N′,N′-tetracetic acid, 0.02% sodium azide, 0.24 mM phenylmethylsulfonyl fluoride (PMSF), 10 mM iodoacetamide, pH 7.4). The homogenate was centrifuged at 000×g for 10 min at 4°C. The supernatant was filtered through four layers of cheese cloth and the pellet was discarded. The supernatant was further centrifuged at 50000×g for 20 min at 4°C. The resulting pellet was suspended in 10 volumes of buffer B (50 mM Tris, 1 mM EDTA, 0.24 mM PMSF, 10 mM iodoacetamide, pH 7.4) using a hand-held Dounce homogenizer and centrifuged at 50000×g for 20 min at 4°C. This procedure was repeated until the supernatant was clear. The final pellet was resuspended in a minimum volume of 50 mM Tris buffer (pH 7.4), homogenized using a Dounce homogenizer, flash frozen in liquid nitrogen and stored at −70°C for radioligand binding assays.

Agonist binding assays were performed with varying concentrations of guanosine-5′-O-(3-thiotriphosphate) (GTP-γ-S) (Boehringer Mannheim, Germany) as follows. Tubes in triplicate containing 1 ng of total protein were incubated for 1 h at room temperature with 0.29 nM [3H]-hydroxy-2-(di-N-propylamino)tetralin (OH-DPAT) (DuPont New England Nuclear, Boston, MA, USA: specific activity 1270 Ci/nmol) in a total volume of 1 ml of buffer C (50 mM Tris, 1 mM EDTA, 10 mM MgCl$_2$, 5 mM MnCl$_2$, pH 7.4). Non-specific binding was determined by performing the assay in the presence of 10 μM unlabelled serotonin. The incubation was terminated by rapid filtration under vacuum in a Millipore multiport filtration apparatus through Whatman GF/B (1.0 μm pore size) 2.5 cm diameter glass microfiber filters (Whatman International, Kent, UK) which were pre-soaked in 0.3% polyethylenimine for 3 h [15]. The filters were then washed three times with 3 ml of ice-cold water, dried and the retained radioactivity was measured in a Packard Tri-Carb 1500 scin-
illuminating counter using 5 ml of scintillation fluid. Antagonist binding assays in the presence of GTP-γ-S were performed as above using [3H]4-(2'-methoxy)-phenyl-1(2'-N-2'-pyridinyl)-p-fluorobenzamido-ethyl-piperazine (p-MPPF) (DuPont New England Nuclear, Boston, MA, USA; specific activity 64.6 Ci/mmol) as the radioligand. The assay tubes contained 0.5 nM [3H]p-MPPF in a total volume of 1 ml of buffer D (50 mM Tris, 1 mM EDTA, pH 7.4). Non-specific binding was determined by performing the assay in the presence of 10 μM unlabelled 4-(2'-methoxy)-phenyl-1(2'-N-2'-pyridinyl)-p-iodobenzamido-ethyl-piperazine (p-MPPi) (a kind gift from Dr V. Bakthavachalam, National Institute of Mental Health Chemical Synthesis Program, Research Biochemicals International). Protein concentration was determined using bicinchoninic acid reagent (Pierce, Rockford, IL, USA) [16].

Saturation binding assays were carried out using varying concentrations (0.1–7.5 nM) of radiolabelled agonist ([3H]OH-DPAT) or antagonist ([3H]p-MPPF) using native membranes containing 1 mg of total protein. Non-specific binding was measured in the presence of 10 μM unlabelled 5-HT (for agonist) or p-MPPi (for antagonist). Binding assays were carried out at room temperature as mentioned above in the presence of high (100 μM) and low (1 nM) concentrations of GTP-γ-S. Control experiments were carried out without GTP-γ-S. Binding data were analyzed as described earlier [10].

\[Q = \frac{B}{V \cdot S} \times 2220 \] M

where \(B \) = bound radioactivity in disintegrations per minute (dpm) (i.e. total dpm - non-specific dpm), \(V \) is the assay volume in ml and \(S \) is the specific activity of the radioligand. Scatchard plots (i.e. plots of RL*/L* versus RL*) were analyzed using Sigma-Plot (version 3.1) in an IBM PC. The dissociation constants (\(K_d \)) were obtained from the negative inverse of the slopes, determined by linear regression analysis of the plots (\(r = 0.92-0.99 \)). The binding parameters shown in Table 2 were obtained by averaging the results of three independent experiments while saturation binding data shown in Figs. 3 and 4 are from representative experiments.

3. Results and discussion

Among the various types of serotonin receptors, the G-protein-coupled 5-HT1A receptor subtype has been the most extensively studied. One of the major reasons for this is the early availability of a highly selective agonist, OH-DPAT, that allows extensive biochemical, physiological and pharmacological characterization of the receptor [17].

![Fig. 1](image1.png)

Fig. 1. Effect of increasing concentrations of GTP-γ-S on the specific binding of the agonist [3H]OH-DPAT to the 5-HT1A receptor from bovine hippocampal membranes. Values are expressed as a percentage of the specific binding obtained in the absence of GTP-γ-S. The data points are the means ± S.E.M. of triplicate points from three independent experiments. See Section 2 for other details.

![Fig. 2](image2.png)

Fig. 2. Effect of increasing concentrations of GTP-γ-S on the specific binding of the antagonist [3H]p-MPPF to the 5-HT1A receptor from bovine hippocampal membranes. Values are expressed as a percentage of the specific binding obtained in the absence of GTP-γ-S. The data points are the means ± S.E.M. of triplicate points from four independent experiments. See Section 2 for other details.

Although selective 5-HT1A agonists (e.g. OH-DPAT) have been discovered more than a decade ago [17], the development of selective 5-HT1A antagonists has been relatively slow and less successful. Recently, p-MPPi and p-MPPF have been introduced as selective antagonists for the 5-HT1A receptor [19–22]. These compounds bind specifically to 5-HT1A receptor with a high affinity. Fig. 2 shows the effect of varying concentrations of GTP-γ-S on specific p-MPPF binding to the 5-HT1A receptors in native membranes. In sharp contrast to what is observed with agonist binding, the antagonist binding shows no dependence on GTP-γ-S over a large range of concentrations (1 nM–100 μM) used, i.e. the antagonist binding is independent of GTP-γ-S. Furthermore, there is a slight (10–

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Specific binding activityb (fmol/mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3H]OH-DPAT (agonist)</td>
<td>76.2 ± 6.4</td>
</tr>
<tr>
<td>[3H]p-MPPF (antagonist)</td>
<td>120.9 ± 11.3</td>
</tr>
</tbody>
</table>

Table 1 Specific activities for [3H]OH-DPAT and [3H]p-MPPF binding to 5-HT1A receptors from bovine hippocampal membranes

For details of binding assays, see Section 2.

Data reported are mean ± S.E.M. of five independent experiments.
20%) increase in binding in the presence of GTP-γ-S. Table 1 shows that the specific activity obtained using the agonist [3H]OH-DPAT is 76.2 fmol/mg protein while that obtained using the antagonist [3H]-MPPF is 120.9 fmol/mg. There is thus a ~60% increase in specific activity when [3H]-MPPF is used. This further suggests that while the agonist [3H]OH-DPAT binds to only that population of 5-HT₁A receptors that is coupled to G-proteins [18], the antagonist [3H]-MPPF binds to both G-protein-coupled and free receptor giving rise to a higher specific activity. Comparing the specific activity values obtained with the agonist and the antagonist, therefore, can provide an idea of the extent of G-protein coupling of 5-HT₁A receptors in the system.

Figs. 3 and 4 show the Scatchard analysis of the specific binding of [3H]OH-DPAT and [3H]-MPPF to 5-HT₁A receptor in bovine hippocampal membranes in the presence of high and low concentrations of GTP-γ-S. The binding parameters under these conditions are summarized in Table 2. The binding affinity of [3H]OH-DPAT shows a considerable reduction at high concentrations (100 μM) of GTP-γ-S, confirming that the receptor is in a low affinity state at high GTP-γ-S concentrations. This is in agreement with Fig. 1 which shows that at high GTP-γ-S concentrations, the low affinity form of the receptor predominates. Table 2 also shows that the binding affinity of [3H]-MPPF in the presence of 100 μM GTP-γ-S shows no significant variation. This supports our previous conclusion that antagonist binding is independent of GTP-γ-S (see Fig. 2).

In summary, we show here that the specific agonist OH-DPAT and the antagonist MPPF bind to 5-HT₁A receptors from bovine hippocampal membranes and exhibit different sensitivities to guanine nucleotides. This difference can be potentially exploited to gain a better understanding of signal transduction processes triggered by the 5-HT₁A receptor. These results are relevant to ongoing analyses of the overall modulation of G-protein coupling in seven transmembrane domain receptors.

Acknowledgements: This work was supported by a Grant (BT/R and D/9/593) to A.C. from the Department of Biotechnology, Government of India. K.G.H. thanks the Department of Biotechnology, Government of India, for the award of a postdoctoral fellowship. We thank S. Bala Tripura Sundari and K. Shanti for helpful discussions and Drs S. Harinarayana Rao, S. Rajanna and Satinder Rawat for help with the tissue collection.

References
