Red Edge Excitation Shift of a Deeply Embedded Membrane Probe: Implications in Water Penetration in the Bilayer

Amitabha Chattopadhyay* and Sushmita Mukherjee‡

Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500 007, India

Received: April 21, 1999; In Final Form: July 8, 1999

The biological membrane is a highly organized anisotropic molecular assembly. While the center of the bilayer is nearly isotropic, the upper portion, only a few angstroms away toward the membrane surface, is highly ordered. How this organization correlates with the degree of water penetration into the bilayer interior is not clear. In general, it is believed that there is not much water in the deeper hydrocarbon regions of the bilayer. In this study, we have utilized the phenomenon of wavelength-selective fluorescence to address this question. We show here that when the same fluorescent group (i.e., 7-nitrobenz-2-oxa-1,3-diazol-4-yl or NBD) is localized at different depths within the bilayer (viz., near the membrane interface in case of the headgroup-labeled NBD-phosphatidylethanolamine (NBD-PE) and near the center of the bilayer in NBD-cholesterol), the degrees to which their fluorescence properties exhibit solvent-induced effects are markedly different. For example, the headgroup-labeled NBD-PE exhibits a much stronger red edge excitation shift (REES) relative to that of NBD-cholesterol. This indicates lesser restriction to mobility in this region as compared to the polar/hydrocarbon interface. In the gel phase, however, REES of NBD-PE did not show any significant change while NBD-cholesterol exhibited no REES. In addition, NBD-cholesterol exhibits a stronger dependence of fluorescence polarization on excitation wavelength in fluid membranes. We attribute these results to the more compact arrangement of the lipid acyl chains in the gel phase which results in lesser water penetration. Since the hydrophobic core of the lipid bilayer is made up of methyl and methylene groups, the only solvent dipoles capable of any interaction with the dipole of the fluorophore giving rise to the REES effect in the fluid phase have to be water molecules that have penetrated deep into the bilayer close to the NBD moiety of NBD-cholesterol. Our results indicate that at least in the fluid phase of the membrane, penetration of water in the deep hydrocarbon region of the bilayer does indeed occur.

Introduction

The biological membrane is a highly organized molecular assembly, largely confined to two dimensions, and exhibits considerable degree of anisotropy along the axis perpendicular to the membrane plane. While the center of the bilayer is nearly isotropic, the upper portion, only a few angstroms away toward the membrane surface, is highly ordered.1–8 As a result, properties such as polarity, fluidity, segmental motion, ability to form hydrogen bonds, and extent of solvent penetration would vary in a depth-dependent manner in the membrane. A direct consequence of such an anisotropic transmembrane environment will be the differential extents to which the mobility of water molecules will be retarded at different depths in the membrane relative to the water molecules in bulk aqueous phase. It is such retardation in the rate of solvent reorientation in the immediate vicinity of a fluorophore that is assessed by wavelength-selective fluorescence in general, and red edge excitation shift, in particular.

Red edge excitation shift (REES) is one of the effects that is observed when a polar fluorophore is placed in motionally restricted media such as very viscous solutions or condensed phases where the dipolar relaxation time for the solvent shell around a fluorophore is comparable to or longer than its fluorescence lifetime.9–12 REES is defined as a shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption band. REES arises from slow fluorophore-solvent interactions in the ground and excited states, including lipid–protein interactions14 and ion transport.15–17 We have previously shown that REES and related techniques (collectively termed as wavelength-selective fluorescence approach) can be used to study motional restriction experienced by membrane-bound molecules and serve as a powerful tool to monitor organization and dynamics of probes and peptides bound to membranes or micelles.9,18–29

The origin of the red edge effect lies in the change in fluorophore-solvent interactions in the ground and excited states, brought about by a change in the dipole moment of the fluorophore upon excitation, and the rate at which solvent...
molecules reorient around the excited-state fluorophore. For a polar fluorophore, a dipolar interaction with the solvent molecules occurs in the ground state in order to minimize the energy of the given state. Since the dipole moment (magnitude as well as direction) of a molecule changes upon excitation, the solvent dipoles have to reorient around this new excited state dipole moment of the fluorophore so as to attain an energetically favorable orientation. This readjustment of the dipolar interaction of the solvent molecules with the fluorophore essentially consists of two components: first, the redistribution of electrons in the surrounding solvent molecules because of the altered dipole moment of the excited-state fluorophore, and second, the physical reorientation of the solvent molecules around the excited-state fluorophore. The former process is almost instantaneous, i.e., electron redistribution in solvent molecules occurs at about the same time scale as the process of excitation of the fluorophore itself (10^{-15} s). The reorientation of the solvent dipoles, however, requires a net physical displacement. It is thus a much slower process and depends on the restriction offered by the surrounding matrix to their mobility. More precisely, for a polar fluorophore in a bulk nonviscous solvent, this reorientation time (τ_R) is on the order of 10^{-12} s, so that all the solvent molecules completely reorient around the excited-state dipole of the fluorophore well within its excited-state lifetime (τ_FL), which is typically on the order of 10^{-9} s. Hence, irrespective of the excitation wavelength used, all emission is observed only from the solvent-relaxed state. However, if the same fluorophore is now placed in a viscous medium, this reorientation process is slowed such that the solvent reorientation time is now on the order of 10^{-9} s or longer. Under these conditions, excitation at the red edge of the absorption band selectively excites those fluorophores which interact more strongly with the solvent molecules in the excited state. These are the fluorophores around which the solvent molecules are oriented in a way similar to that found in the solvent-relaxed state. Thus, the necessary condition for REES is that different fluorophore populations are excited at the maximal and the red edge excitation and, more importantly, this difference is maintained in the time scale of fluorescence lifetime. As discussed above, this requires that the dipole relaxation time for the solvent shell be comparable to or longer than the fluorescence lifetime. This implies a reduced mobility of the fluorophore with respect to the surrounding matrix.

Using anthroyloxy probes that are localized at different depths in the membrane, we have recently shown that for a given fluorophore, REES varies as a function of probe penetration depth. In this paper, we demonstrate that this is also true for membrane-bound (7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) probes and that REES exhibited by these probes depend on their precise location in the membrane. For this purpose, we have employed two probes, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) and 25-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol (NBD-cholesterol), for monitoring two different regions of the membrane bilayer (see Figure 1). NBD-labeled lipids are widely used as fluorescent analogues of native lipids in biological and model membranes to study a variety of processes. In NBD-PE, the NBD group is covalently attached to the headgroup of a phosphatidylethanolamine molecule (Figure 1). The NBD group in NBD-PE has earlier been shown to be localized in the interfacial region of the membrane. In contrast to this, the NBD group in NBD-cholesterol is attached to the flexible acyl chain of the cholesterol molecule. The NBD group of this molecule has been found to be localized deep in the hydrocarbon region of the bilayer and its modulation by phase properties of the membrane.

Experimental Section

Materials. Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were purchased from Sigma Chemical Co. (St. Louis, Missouri). NBD-PE and NBD-cholesterol were from Molecular Probes (Eugene, Oregon). Lipids were checked for purity by thin-layer chromatography (TLC) on silica gel precoated plates (Sigma) in chloroform/methanol/water (65:35:5, v/v/v) and were found to give one spot with a phosphatase-sensitive spray and on subsequent charring. NBD-PE was found to be pure when detected by its color or fluorescence. TLC of NBD-cholesterol was done using the same solvents but in a slightly different proportion (65:35:4, v/v/v), and it was found to be pure when detected by its color or fluorescence. Concentration of DPPC was determined by phosphate assay after total digestion by perchloric acid. DMPC was used as a standard to assess lipid digestion. Concentrations of stock solutions of NBD-PE and NBD-cholesterol in methanol were estimated using their molar absorption coefficients (ε) of 21 000 and 22 000 M$^{-1}$ cm$^{-1}$ at 463 and 484 nm, respectively. Solvents used were of spectroscopic grade. Water was purified through a Millipore (Bedford, Massachusetts) Milli-Q system and used throughout.

Preparation of Vesicles. Unilamellar vesicles (ULV) of DPPC labeled with 0.1% (mol/mol) NBD-cholesterol were prepared by the ethanol injection method. For this, 640 nmol of DPPC and 0.64 nmol of NBD-cholesterol were dried together. The dried lipids were then dissolved in ethanol to give a final concentration of about 40 mM lipid. This ethanolic lipid solution was then injected into 10 mM sodium phosphate, 150 mM sodium chloride, pH 7.0 buffer while vortexing to give a final concentration of 0.43 mM lipid in the buffer. The temperature of the buffer was maintained higher than the phase transition temperature of DPPC (i.e., $>$41 °C) while the injections were made. Background samples were prepared the same way except that the probe was omitted.

Fluorescence Measurements. Steady-state fluorescence measurements were performed with a Hitachi F-4010 spectrophotometer using 1 cm path length quartz cuvettes. Excitation and emission slits with a nominal band-pass of 5 nm were used for...
all measurements. Experiments involving the gel phase were
done at 23 °C, whereas the experiments with fluid phase
membranes were carried out at 54 °C. Background
intensities of samples in which fluorophores were omitted were subtracted
from each sample spectrum to cancel out any contribution due
to the solvent Raman peak and other scattering artifacts.
Fluorescence polarization measurements were performed using
a Hitachi polarization accessory. Polarization values were
calculated from the equation:43
\[
P = \frac{I_{VV} - GI_{VH}}{I_{VV} + GI_{VH}}
\]
where \(I_{VV}\) and \(I_{VH}\) are the measured fluorescence intensities with
the excitation polarizer vertically oriented and the emission
polarizer vertically and horizontally oriented, respectively. \(G\)
is the grating correction factor and is equal to \(I_{VV}/I_{HH}\). All
experiments were done with multiple sets of samples and
average values of fluorescence and polarization are shown in
the figures. The spectral shifts obtained with different sets of
samples were identical in most cases. In other cases, the values
were within ±1 nm of the ones reported.

Results

The Red Edge Effect. In general, for a fluorophore in a bulk
nonviscous solvent, the fluorescence decay rates and the
wavelength of maximum emission are independent of the
excitation wavelength. This is because of Kasha’s rule which
states that fluorescence normally occurs from the zero vibrational
level of the first excited electronic state of a molecule.44
However, this generalization breaks down in case of polar
fluorophores in motionally restricted media such as very viscous
solutions or condensed phases, that is, when the mobility of
the surrounding matrix relative to the fluorophore is considerably
reduced. Under such conditions, when the excitation wavelength
is gradually shifted to the red edge of the absorption band, the
maximum of fluorescence emission exhibits a concomitant shift
toward higher wavelengths. Such a shift in the wavelength of
maximum emission toward higher wavelengths, caused by a
corresponding shift in the excitation wavelength toward the red
edge of the absorption band, is termed red edge excitation shift
or REES.9 Since REES is observed only under conditions of
restricted mobility, it serves as a faithful indicator of the
dynamics of the fluorophore environment.

Red Edge Excitation Shifts of Membrane-Bound NBD
Probes: The Dipstick Effect. The emission maxima of NBD-
labeled lipids are sensitive to the polarity of the probe
microenvironment.22,31–34,45–47 The fluorescence emission maxima
for NBD-PE and NBD-cholesterol in fluid phase DPPC vesicles
are at 529 and 518 nm, respectively (see Figure 2). The blue
shift of the emission maximum for NBD-cholesterol (compared
to NBD-PE) is indicative of its deeper location in the nonpolar
region of the membrane, as reported earlier by one of us.33,34
The shifts in the maxima of fluorescence emission of NBD-
PE and NBD-cholesterol in fluid DPPC vesicles as a function
of excitation wavelength are shown in Figure 2. For NBD-PE,
as the excitation wavelength is changed from 465 to 515 nm,
the emission maximum shifts from 529 to 538 nm, which
represents to a REES of 9 nm. Such shift in the wavelength of
emission maximum with change in the excitation wavelength is
characteristic of the red edge effect and indicates that the
NBD moiety in NBD-PE is localized in a motionally restricted
region of the membrane that offers considerable resistance to
solvent reorientation in the excited state. Figure 2 also shows

![Figure 2.](image-url)

that, for NBD-cholesterol, as the excitation wavelength is
changed from 475 to 507 nm, the emission maximum shifts
from 518 to 523 nm, which amounts to a REES of 5 nm. We
chose to use 0.1% (mol/mol) of NBD-cholesterol in our
experiments to avoid any artifacts due to NBD-cholesterol
aggregation in the membrane.39 It should be noted here that the
fluorescence of NBD-cholesterol is relatively weak,34 and we
found it difficult to work in excitation wavelengths longer than
507 nm because of the very low signal-to-noise ratio and
artifacts due to the Raman peak that remained even after
background subtraction.

An interesting feature of this result is that the magnitude of
REES obtained for membrane-bound NBD probes varies in
direct correlation with their penetration depths. In other words,
whereas NBD-PE, which is a shallow probe present in the
membrane interfacial region exhibits a REES of 9 nm, the deep
probe NBD-cholesterol, present in the inner hydrocarbon-like
region of the membrane, shows a REES of 5 nm under identical
conditions. We attribute this to differential rates of solvent
reorientation (which is a function of different degrees of
motional restriction experienced by the solvent molecules) as a
function of probe depth. These results are in good agreement
with our previous report in which we showed that such depth-
dependent REES is exhibited by membrane-bound anthroyloxy
probes localized at various depths in the membrane.28
Furthermore, the present results obtained using NBD probes localized
at different depths in the membrane indicate that such “dipstick
effect” is independent of the probe used.

Red Edge Excitation Shifts of Membrane-Bound NBD
Probes in the Gel Phase. Figure 3 shows the effect of changing
excitation wavelength on the wavelength of maximum emission for
membrane-bound NBD probes in gel phase DPPC vesicles.
The fluorescence emission maximum of NBD-PE was found to
be at 530 nm when excited at 465 nm (see Figure 3). As the
excitation wavelength of NBD-PE in gel phase DPPC vesicles is
changed from 465 to 515 nm, the emission maximum is
shifted from 530 to 538 nm, which corresponds to a REES of
8 nm. Thus, no appreciable change either in the emission
maximum or REES was observed with the variation in the
physical state of the membrane. These results indicate that the
immediate environment of the NBD moiety in NBD-PE, as
measured either by the absolute position of its emission
maximum at a particular excitation wavelength or by REES, is
not affected when the membrane undergoes the phase transition.
from the gel to the fluid (liquid crystal) phase. This is not particularly surprising since changes in membrane organization brought about by phase transition are largely restricted to the fatty acyl region of the membrane and are not sensed by the NBD moiety of NBD-PE which is attached to the headgroup and is located at the membrane interface. In addition, small molecular motions of the headgroup region of membranes, which are responsible for spectral relaxation, have previously been shown not to be affected in a major way by phase transition.

Figure 3 also shows that the emission maximum of NBD-cholesterol in gel phase DPPC membranes is at 523 nm. Interestingly, while the emission maximum of NBD-PE shows no significant shift upon phase transition (Figures 2 and 3), that of NBD-cholesterol exhibits a red shift of 5 nm when taken from fluid to gel phase membranes. The emission maximum of NBD-cholesterol in gel phase DPPC vesicles, however, does not change at all when the excitation wavelength is changed from 475 to 507 nm, i.e., NBD-cholesterol shows no REES in the gel phase membrane. This is in sharp contrast to a REES of 5 nm observed in case of NBD-cholesterol in fluid phase membranes as shown in Figure 2.

It should be mentioned here that the difference in REES observed for NBD-cholesterol in the fluid (experiments done at 54 °C) and the gel (experiments done at 23 °C) phase cannot be attributed to temperature effects. This is because in control experiments with dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles at 23 °C, NBD-cholesterol exhibits a REES of 5 nm.

Polarization Changes with Excitation Wavelength for Membrane-Bound NBD-Probes. In addition to the dependence of fluorescence emission maxima on the excitation wavelength, fluorescence polarization is also known to depend on the excitation wavelength in viscous solutions or in otherwise motionally restricted media (ref 9 and references therein). Due to strong dipolar interactions with the surrounding solvent molecules, there is a decreased rotational rate of the fluorophore in the relaxed state. On red edge excitation, a selective excitation of this subclass of fluorophore occurs. Because of strong interaction with the polar solvent molecules in the excited state, one may expect these “solvent relaxed” fluorophores to rotate more slowly, thereby increasing the polarization.

The excitation polarization spectra (i.e., a plot of steady-state polarization vs excitation wavelength) of NBD-cholesterol in fluid and gel phase DPPC vesicles are shown in Figure 4. When excited at 475 nm, the polarization of NBD-cholesterol in fluid phase vesicles is significantly lower than in gel phase reflecting the difference in dynamics in the two phases. However, the polarization of NBD-cholesterol in the fluid phase undergoes considerable change (increases by 81%) upon increasing the excitation wavelength from 475 to 507 nm, with a sharp increase occurring toward the red edge of the absorption band (Figure 4a). Such an increase in polarization upon red edge excitation has been previously reported for fluorophores in media of reduced mobility. The polarization of NBD-cholesterol in gel phase membranes, on the other hand, although starts at a higher initial value (i.e., when excited at 475 nm), shows a much weaker dependence (8% increase) upon excitation wavelength (see Figure 4b). Thus, NBD-cholesterol in the fluid phase exhibits a much stronger dependence of its fluorescence polarization (on excitation wavelength when compared to the gel phase.

Discussion

Our results in fluid DPPC membranes show that while NBD-PE, a shallow probe present in the membrane interfacial region, exhibits a REES of 9 nm, the deep probe NBD-cholesterol, present in the hydrocarbon-like interior of the membrane, shows a significantly reduced REES of 5 nm. Thus, the magnitude of REES can be correlated with membrane penetration depths of these two NBD probes. This result correlates very well with
differential rates of solvent relaxation at different depths in the membrane and is consistent with a motional gradient along the membrane axis as a function of depth of penetration. This reinforces our earlier observation\(^28\) that the magnitude of REES was found to be independent of probe concentration (in the range of 0.1–2 mol % NBD-cholesterol). Moreover, even in natural membranes, polar residues of integral membrane proteins are often present in membrane hydrophobic regions.\(^59\)

Figure 5. A schematic representation of half of the membrane bilayer showing the localizations of the NBD groups of NBD-PE and NBD-cholesterol in DPPC vesicles. The horizontal line at the bottom indicates the center of the bilayer.

In summary, our results demonstrate the presence of water in the deep hydrocarbon region of the membrane and its modulation by the phase properties of the membrane.

Acknowledgment. This work was supported by the Council of Scientific and Industrial Research, Government of India. S.M. thanks the University Grants Commission for the award of a Senior Research Fellowship. We thank Satinder S. Rawat and R. Rukmini for helpful discussions.

References and Notes

(30) Use of a single parameter \(r\) to describe the relaxation of solvent molecules is a first order approximation since a set of relaxation times would exist in real systems. However, such an approximation is often made to make the relaxation model simple. Thus, \(r\) may be considered as a simple effective parameter characterizing the solvent relaxation process.

(48) We have used the term maximum of fluorescence emission in a somewhat wider sense here. In every case, we have monitored the wavelength corresponding to maximum fluorescence intensity, as well as the center of mass of the fluorescence emission. In most cases, both these methods yielded the same wavelength. In cases where minor discrepancies were found, the center of mass of emission has been reported as the fluorescence maximum.

(49) Lentz, B. R.; Barenholtz, Y.; Thompson, T. E. *Biochemistry* 1976, 15, 4521.

(52) These lipids (DOPC and POPC) form vesicles that are in the fluid phase at 23 °C.

