First slide

Research Interests

Mechanism of Epigenetic Inheritance
Barbara McClintock discovered transposable elements in maize. She also realized that transposons inserted near pigmentation or amylose production genes can alter the `state of gene`. What she called `state of gene` is now called `Epigenetic regulation`. Epigenetic information is heritable during mitotic and/meiotic cell divisions but it is not encoded in the genetic material. It is stable even in the absence of initial trigger and is reversible to various extents. Epigenetic regulation is important for heterochromatin maintenance and euchromatic gene regulation among many other cellular processes. One of the important questions in the field of epigenetics is the mechanism of inheritance of epigenetic state. Our understanding is far from complete about the molecules that inherit epigenetic memory during DNA replication. We, plant chromatin group in CSIR-CCMB has a strong interest in finding such molecules which transmit epigenetic memory from one cell to another or one generation to the next. We use Arabidopsis thaliana as a model plant and take cell biology, molecular biology, biochemical and genetic approaches to address the question of mechanism of inheritance of epigenetic cellular memory.

Selected Publications

Sarma S, Lodha M. Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida. BMC Plant Biology. 17:238 (2017).

Lodha M, Marco CF, and Timmermans MCP. The ASYMMETRIC LEAVES Complex Maintains Repression of KNOX Homeobox Genes via Direct Recruitment of Polycomb Complex2. Genes and Development 27(6):596-601 (2013).

Lodha M, Schroda M. Analysis of chromatin structure in the control regions of the chlamydomonas HSP70A and RBCS2 genes. Plant Mol Biol. 59(3):501-13 (2005).

Lodha M, Schulz-Raffelt*. Schroda M. A new assay for promoter analysis in Chlamydomonas reveals roles for heat shock elements and the TATA box in HSP70A promoter-mediated activation of transgene expression. Eukaryotic Cell. 7(1):172-6 (2008).

* Equal contribution.

Husbands AY, Benkovics AH, Nogueira FT, Lodha M, Timmermans MC. The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity. Plant Cell. 27(12):3321-35 (2015).

No data Found....

No data Found.... No data Found.... No data Found.... No data Found.... No data Found....No data Found.... No data Found.... No data Found.... No data Found.... No data Found....

Publications

TitleJournalYear
Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida. BMC Plant Biology 2017
The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity. Plant Cell 2015
The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2. Genes and Development 2013
Genetic and epigenetic regulation of stem cell homeostasis in plants. Cold Spring Harb Symp Quant Biol 2008
A new assay for promoter analysis in Chlamydomonas reveals roles for heat shock elements and the TATA box in HSP70A promoter-mediated activation of transgene expression Eukaryotic Cell 2008
Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. Plant Journal 2007
Analysis of chromatin structure in the control regions of the chlamydomonas HSP70A and RBCS2 genes. Plant Molecular Biology 2005
J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids 1. Mol Biol Cell 2005

Mukesh Lodha

Ramalingaswami Fellow

2942

mukesh@ccmb.res.in

Sharmila Singh

Research Associate(DBT)

2940

sharmilasingh@ccmb.res.in

Akanksha Garhewal

Senior Research Fellow

2940

akanksha.garhewal@ccmb.res.in

Preethi Jampala

Senior Research Fellow

2940

preethi.jampala@ccmb.res.in

Aditya Undru

Senior Research Fellow

2940

adityaundru@ccmb.res.in

Shraddha Vijay Lahoti

Junior Research Fellow

2940

shraddha@ccmb.res.in

Isha Joshi

Junior Research Fellow (Project)

2940